
~ p~ina7echni cal epwIt,

CD, EACTORS IN SOFTWAREQUALITY. Vk~~
(~'P-elimlnary'!Handbookwon Software Quality for an/ j~/AquisitionManager,

/0 ~4iJim A. /m'cCall,
'4 Paul K./RichA'rds

___ Gene F./Waiters

-General Electric Company

.,

4-

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the PADC Information Office (01) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nations.

RADC-TR-77-369, Vo] III (of three) has been reviewed and approved for
publication.

APPROVED:

JOSEPH P. CAVANO
Project Engineer

APPROVED: (2 &4~L (

ALAN R. BARNUM, Assistant Chief
information Sciences Division

FOR THE COMMANDER:

JOH" .F HUSS
Acting Clief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy.

SECURITY CLASSIFICATION OF THIS PAGE (IW.i, Vt e En eed)RE D I S UC ON
REPORT DOCUMENJATIO4 PAGE BFRE COMPTING ORM

I. REPORT NU bER ' j2. GOVT ACCESSION NO. 3. ft9CIPIkNTIS CATALOG NUMBER

RADC-TR-77-369, Vol III (of three)
4. TITLE (and Subtlfe) S. TYPE OF REPORT A P91111O0 COVERED

Final Technical Report
FACTORS IN SOFTWARE QUALITY Aug 76 - Jul 77 -

Preliminary Handbook on Software Quality for an I11 PERFOIRMIWGORO. REPORT NUMBER

Acquisition Manager N/A
7 AUTHOR(s) I. CONTRACT 00 GRANT NUMBreR~)

Jim A. McCall
Paul K. Richards F30602-76-C-0417
Gene F. Walters

7. PERFORMING ORGA WZATION NAME AND ADDRESS 10. PROGRAM ELEMENF 01ROJEFT, TASK

General Electric/Coimand & Information Systems AREA & WORK UNIT NUMBERS

450 Persian Drive 64740F
Sunnyvale CA 94086 22370301

11. CONTROLiING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (ISIS) -November 1977

Griffiss AFB NY 13441 3NUBROPAE

14. MONITORING AGENCY NAME A AODRESS(iI different Irom Controllingd Office) 111. SECURITY CLASS. (of Ohio MeOWt)

Same UNCLASSIFIED
0. 0!CL ASSIPFICA IION/ DOWN GRADING

SCHEDULE

____ ___ ____ ___ ___ ____ ___ ___ ____ ___ __ /A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. ID I
III. DISTRIBUTION STATEMENT (of tA. abstract entered in Bloek 20, It different f;RogRport)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer:
Joseph P. Cavatn (ISIS)

19. KEY WORDS (Continue on reverse oide if nececemy and identify' Ar block nianber)

Software Quality
Quality Factors
Metrics
Software Measurements

20O ABSTRACT (Continue on reerse aide it nece.aay mid identify by black nuot~)

An hierarchical definition of factors affecting software quality was compiled
after an extensive literature search. The definition covers the complete range
of software development and is broken down into non-oriented and software-
oriented characteristics. For the lowest level of the software-oriented fact-
ors, metrics were developed that would be independent of the programming lang-
uage. These measurable criteria were collected and validated using actual Air
Force data bases. A handbook was generated that will be useful to Air Force

DD FON~, 1473 EDITION OP I NOV 65 It OSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("oneW bete EneerE.

SUCUmITY CLASSIFICATION OF THIS PA6gt(mn Doe begeso

acquiaitom manapge for specifying the overall quality of a software system.

UNCLASSIFIM
SISCU01ITY CLASFICATION OF THIS PAO4lMgm b~a gW,*

PREFACE

This document is the final technical report (CDRL A003) for the Factors in

Software Quality Study, contract number F030602-76-C-0417. The contract was

performed in support of the U.S. Air Force Electronic Systems Division's

(ESD) and Rome Air Development Center's (RADC) mission to provide standards

and technical guidance to software acquisition managers.

The report consists of three volumes, as follows:

Volume I Concept and Definitions of Software Quality

Volume II Metric Data Collection and Validation

Volume III Preliminary Handbook on Software Quality for an

Acquisition Manager

The objective of the study was to establish a concept of software quality and

provide an Air Force acquisition manager with a mechanism to quantitatively

specify and measure the desired level of quality in a software product.

Software metrics provide the mechanism for the quantitative specification and

measurement of quality.

This third volume is a preliminary stand-alone reference document to be used

by an acquisition manager to implement the techniques established during the

study.

A -

......... ..

RY3

fol:rpM C

TABLE OF CONTENTS

Section Pe

I INTRODUCTION 1-1

1.1 Purpose 1..... .. . 1-1

1.2 Scope 1-2

1.3 Relationship of Handbook to Quality AssurnOe Function . 1-2

1.4 Benefits of Approach 1-3

1.5 Handbook Organization 1-4

1.6 Relationship of Handbook to Factors In Software Quality
Final Report 1-5

1.7 Definitions 1-7

1.8 Recommended Use of Handbook...... 1-9

2 SPECIFYING SOFTWARE QUALITY 2-1

2.1 Concept of Factors in Software Quality 2-1

2.2 Specifications Using Software Quality Factors 2-4

2.3 Identification of Critical Software Attributes 2-9

2.4 Quantification of Software Quality 2-14

3 MEASURING SOFTWARE QUALITY 3-1

3.1 The Concept of Quality Metrics 3-1

3.2 Formal Inspection of Software Products Using Metrics . . . 3-4

3.3 Metric Indicator Concept 3-5

3.4 Formal Relationship of Metrics to Quality Factors 3-6

iii

.&• I

LIST OF FIGURES

Figure Number Title Page

1-1 Relationship of Software Quality to Cost 1-8

1-2 Software Development Process Control 1-10

2-1 Allocation of Software Quality Factors to
Product Activity. 2-2

2-2 Relationship of Criteria to Software Quality
Factors 2-10

3-1 Concept of Metrics 3-2

3-2 Normalization Function (Design) for Flexibility... 3-7

3-3 Determination of Level of Confidene 3-8

LIST OF TABLES

Table Number Title Page

1-1 Presentation of Approaches to Specifying and
Measuring Software Quality 1-6

2-1 Definition of Software Quality Factors 2-3

2-2 System Characteristics and Related Quality Factors 2-5

2-3 The Impact of Not Specifying or Measuring
Software Quality Factors 2-7

2-4 Relationships Between Software Quality Factors . . . 2-8
2-5 Criteria Definitions for Software Quality Factors.. 2-12

2-6 Problem Report and Man-Power Expenditure
Categorization 2-15

3-1 Example Metrics 3-3

iv

7SECTION 1

INTRODUCTION

l1 PUPEO,
In the acquisition of a new software system, a P*jor problem facing a System

Program Office (SPO) is to specify the requirements to the software developer

and then to determine whether those requirements are being satisifed as the

software system evolves. The parameters of the specification center about the

technical definition of the application and the function of the software within

the overll system. Following this specification, a realistic schedule and
costs are negotiated.

There has been no mechanism for specifying the qualities or characteristics

of the software - qualities such as reliability, maintainability, usability,

testability, and portability. The importance of these software qualities

which go beyond the technical mission has been recognized in recent years as

a necessary concern for software development managers.

This recognition has come about because of the many instances in which the

consequences of not considering software quality has driven total project costs

and schedule well beyond initial estimates. It has been found that the costs
throughout the total life cycle are more affected by the characteristics of the

software system than by the mission-oriented functions performed by the software

system. Large-scale software systems have sometimes proven untestablE, un-
modifiable, and largely unusable by operations personnel because of the

characteristics of the software.

While the application functions, cost, and schedule aspects of development can
be objectively defined, measured, and assessed throughout the developemnt of

the system, the quality desired has historically been definable only in sub-
Jective terms. This occurs because the SPO has no quantificable criteria

4gqinst which to judge the quality of the software until he begins tp use the

system uyu4r qppration conditions. This usually leaves the SPO with only two

alternatives: to incur increased costs or to back off from the requirements
initially desired for the system.

1-1I

The objectives of this handbook are (1) to describe to the acquisition manager

what the software qualities or characteristics are that should be included in

a specification, (2) provide a mechanism for objectively specifying the

software quality requirements, and (3) introduce a methodology for measuring

the level of software quality achieved.

1.2 SCOPE

This handbook is based on the results of a study conducted in support of the

U.S. Air Force Electronic Systems Division's (ESD) and Rome Air Development

Center's (RADC) mission to provide standards and technical guidance to soft-

ware acquisition managers. The study represented an initial conceptual inves-

tigation of the factors of software quality with a limited sample validation
of the concept. Further reasearch and demonstrations of the concept are

planned. With this fact in mind, three approaches are described for both

specifying and measuring software qualities. The approaches are presented

in order of increasing quantification. For both specification and measure-

ment, the first two approaches described are immediately implementable and

usable, while the third approach is in its conceptual infancy. Further exper-
ience and analysis are required to derive the generally usable quantified

relationships required by the third approach.

1.3 RELATIONSHIP OF HANDBOOK TO QUALITY ASSURANCE FUNCTION

The techniques described in this handbook are envisioned as an integral part of

an overall quality assurance program. Two important facets of quality assurance
are covered in the handbook; software quality specification and software quality

evaluation. A review of MIL-STD 483 and 490 provides insight into how these

techniques fit into current software development and quality assurance practices.

Appendix I, System Specification, Type A, of IL-STD 490 covers characteristics
(paragraph 3.2) of the system which should be described in the specification.

Characteristics such as reliability, maintainability, availability, and inter-

changeability are mentioned but are oriented toward hardware systems. The
software quality factors described in Section 2 of this handbook should be

incorporated in this section of a system specification. Appendix VI, Computer

1-2

Program Development Specifications, of MIL-STD 490 and Appendix VI, Computer

Program Configuration Item Specification, of NIL-STD 483 also relate to the

specification of software in Section 3, Requirements. It is stated that

the requirements "shall contain performance and design requirements" and
"specify design constraints and standards necessary to assure compatibility

of the CPCI." The design requirements and standards should also include those

features that enhance software quality. Section 2 of this handbook provides

the terminology and procedures for including requirements for software quality

in the specification.

With respect to the measurement of software quality, Section 4 of the afore-

mentioned appendices of MIL-STDs 483 and 490 cover quality assurance provisions.

Current emphasis in these sections is on functional testing, the "formal

verification of the performance of the CPCI in accordance with the requirements."

These quality assurance provisions should also include evaluation of the soft-

ware quality. Section 3 of this handbook describes approaches utilizing software

metrics which quantify and formalize the software quality evaluation procedure.

1.4 BENEFITS OF APPROACH

The concepts of software quality metrics expressed in this handbook contribute

to a more disciplined, engineering approach to software quality assurance. The

software acquisition manager is provided with conceptually simple, easy to

use procedures for specifying required quality in more precise terminology.

The specification procedures force a life-cycle view at the initial planning

stages of a software development. An acquisition manager essentially performs

a tradeoff analysis between the quality factors, cost, and schedule in estab-

lishing the requirements of the system. The software developer is forced to

address how they plan to build the required quality into the software.

Specific software quality attributes required are independent of the design

and implementation techniques used by the software developer. Further

insurance or confidence is gained from this more precise description of

the quality requirements.

1-3

I1

The software quality metrics provide a more formal, consistent means of

evaluating/inspecting the software products developed during a software system

development effort. They also provide a means of tracking the progress since

they are applied at several points in time during the development. The

consistency provides a basis for comparison between projects or between
different data collectors.

The metric indicator concept adds an additional dimension in that it provides

a mechanism for pinpointing difficlencies. Evaluation is required to

determine what corrective action, If any, need be taken.

Many of the metrics can be automatically collected enhancing their accuracy

and consistency. The metrics are applied during all phases with increasingly

greater confidence in their indication of quality. The accumulation of the

metric data and the application of these analytical techniques enhance the

understanding of the software development process and the characteristics of

good design and implementation.

The cumulative effect of these procedures and techniques is that a quanti-
tative relationship between metrics and software quality ratings can be

derived and used to predict how well the software development is progressing

toward achieving the required quality in the resulting software product.

This ability to specify software quality and quantitatively measure the

development in terms of the quality will assist the acquisition manager and

software developer in producing higher quality products.

1.5 HANDBOOK ORGANIZATION

The handbook has been organized as a reference document for an acquisition

manager, describing the concepts of software quality and identifying where

more detailed information can be found.

1-4

The first section provides introductory information, definitions, and recom-

mendations for use of the handbook.

The second section describes three approaches to specifying software quality.

Each description is organized in the following manner:

e General discussion of approach

e Steps to be followed

The third section describes three approaches to measuring software quality.

Each approach is described using the same format of the second section.

The three approaches in each section are presented in order of increasing

formality and quantification of the relationship between the metrics and

the quality factors. The approaches are titled and can be easily identified

in the handbook as shown in Table 1-1.

1.6 RELATIONSHIP OF HANDBOOK TO FACTORS IN SOFTWARE QUALITY FINAL REPORT

This handbook is based on and utilizes the concepts described in the Factors

in Software Quality Final Report, Volumes I and II, and previous research

efforts related to software quality referenced in that report. The report

is the result of work performed for ESD and RADC under contract number

F030602- 76-C-0417.

It is recommended that the Factors in Software Quality Final Report be read

* and used as a supporting reference for implementing the concepts described

in this handbook.

It is also recommended that the metric table (Table 6.2.1) contained in the

first volume of that report be used as a data collection form in applying

the metrics.

1-5

cI!)
cr I-

I--~

400

Co LA =-

V) LL- U. PC

Q (al 0404 L -

01 1- i) S.

> C.) La. La.. c Z

V, "/ I- I-- -

0. c- 0. m =) w Q
Q~ (n (a LL Z W

(a 5-$S.. S-

o- V) La3=a.

4JJ W i 3- ~j C n e

U~ (.V) W-4 0'j mjE L

I-- 4- U- 4 LA

4- (n (3 V C

o-

1.7 DEFINITIONS

The following definitions are provided as explanation of teMnology used in

this handbook:

* Software: the programs and documentation associated with and resulting

from the software development process.
* Quality: a general term applicable to any trait or characteristic,

whether Individual or generic; a distinguishing attribute which

indicates a degree of excellence or identifies the basic nature of

something.

* Factor: a condition or characteristic which actively contributes to

the quality of the software. For standardization purposes, all factors

will be related to a normalized cost to either perform the activity

characterized by the factor or to operate with that degree of quality.
For example, maintainability is the effort required to locate and

fix an error in an operational program. This effort required may be

expressed in units such as time, dollars, or manpower. The following

rules apply to the set of software quality factors:

- A condition or characteristic which contributes to software quality

- A user-related characteristic
- Related to cost either to perform the activity characterized by

the function or to operate with that degree of quality

- Relative characteristic between software products

The last rule, that a factor is a relative characteristic between

software products, requires a brief explanation. Figure 1-1 illus-

trates the relationship between a factor and the cost to achieve

different levels of that quality factor. As an example, assume the

curve describes the cost versus level of quality relationship for the

factor reliability. A much lower level of reliability, which costs

less to achieve, may be as acceptable to a management information
system (MIS) acquisition manager as a much higher level is to a

command and control (C2) manager due to the nature of the individual

1-7

2

applications. So, while the C2 final product may have a higher degree of

reliability according to our measures, it may be no more acceptable to

the user than the MIS system with its lower reliability is to its user.

COST$
'f~- MIS

1 Rating of Reliability 0

Figure 1-1 Relationship of Software Quality to Cost

9 Criteria: attributes of the software or software production process

by which the factors can be judged and defined. The following rules

apply to the criteria:

- Attributes of the software or software products of the development

process; i.e., criteria are software-oriented while factors are

user-oriented

- May display a hierarchical relationship with subcriteria

- May affect more than one factor

* Metrics: quantitative measures of the software attributes related to

the quality factors. The measures may be object-ve or subjective. The
units of the metrics are chosen as the ratio of actual occurrences

to the possible number of occurrences.
e Normalization Function: a formal mathematical relationship between

a set of metrics and a rating of a quality factor.

1-8

1.8 RECOWIENDED USE OF HANDBOOK

It is recommended that this handbook be used by an acquisition manager as a
reference during the preparation of a software system specification, or a request

for proposal for a software system development, and during evaluation activities

of the software development phase.

The concept of quality metrics as described in this handbook involves the

application of the metrics via already existing control mechanisms, i.e., reviews,

status reports, documentation delivered during the development, and source code.
The current emphasis of these controls is to evaluate the schedule and cost

performance and to determine the functional correctness of the software being

developed. The quality metrics are applied to these control vehicles to provide

an indication of the quality of the software product being developed. This

concept is illustrated in Figure 1-2.

The metric data collection (measuring) can be done by the contractor or

developer and reported during reviews or it can be performed by the acquisition

manager's quality assurance or verification and validation personnel.

The order in which the three approaches to specifying and measuring software

quality are presented not only corresponds to the increasing formality of the

relationship between quality and the metrics but also represents an increasing

manpower requirement for implementation and an increasing requirement for

experience on the part of the SPO with the concepts. Based on these facts, it
is recommended that the concepts be incrementally phased into an acquisition

manager's operation. The first approach described, for both specifying and

measuring quality, can be implemented with a minimum amount of effort and will

yield immediate benefits to the acquisition manager. The second approach can

then be phased in, requiring additional effort, but providing higher confidence

in the indication of the level of quality being achieved during the development

process. The phased approach to the introduction of the quality metrics con-

cepts allows for training, familiarization, and experience to be gained while

the concepts are actually used and benefits realized. The third approach will
become more viable as experience and historical data is accumulated using the

first two approaches. The mathematical relationships required by the third

approach are derived from the historical data.

1-9

A IA
LI

I.-.
40 aw 4

4A l- C

4A

V) 'K vJJo

A. I ~

ICO0-- 40w

ig I-

gw
t4)

LaL

a1.

C2, WI-C

-SECTION 2

SPECIFYING SOFTWARE QUALITY

2.1 CONCEPT OF FACTORS IN SOFTWARE, QJALITY

An acquisition manager's involvement with a software p0oduct can be categorized

in terms of three distinct activities as follows:

SOFTWARE PRODUCT ACTIVITIES

* Product Operation

• Product Revision

* Product Transition

Specific qualities or characteristics (quality factors) of the software product

are related to these activities as shown in Figure 9-1. The questions in

parentheses provide the relevancy or interpretation of the factors to an

acquisition manager.

Thus, with respect to the operation of a software system, a m acquisition manager's

concern for quality is in terms of its correctness, reliability, efficiency.

integrity, and usability. Over the life cycle of a system, revisions to the

system may be necessary due to problems or changing requirements. The

acquisition manager is therefore concerned with the maintainability*

flexibility, and testability of the software. Longer range considerations

may involve moving the software to another hardware system, interfacing it

with another system, or developing neer versions of the system. The

related quality concerns are for portability, interoperability, and reusability.

The definitions of these eleven quality factors are in Table 2-1.

All of the quality factors should be considered in the initial specification

* for the software. The first approach (paragraph 2.2) describes the procedure

* for considering these quality factors. The following paragraphs (2.3, 2.4)

describe progressively more detailed approaches to specifying software quality.

2-1

<1

IAJ =L =-

C.. cc w

-j n -

ma I ca 3a

-'-1

4J

4-44J

-A V)

-L 4-7 ~ -J L

-P dc cJ

LIL.

ot 9-

LLi,

I I..-

-II 0.

L4A.

w 0--

Table 2-1 Definition of Software Quality Factors

, s ,' ,Extent to which a program satisfies Its specifications

and fulfills the user's mission objectives.

PUIABILITY Extent to which a program can be expected to perform

its intended function with required precision.

EFFICIEJ Y The mount of computing resources and code required by

a program to perform a'Yunction.

I,!TERITY Extent to which access to software or data by

unauthorized persons can be controlled.

UJILITY Effort required to learn, operate, prepare input, and
interpret output of a program.

IAINTAIIAILITY Effort required to locate and fix an error in an

operational program.

TESTABILT Effort required to test a program to insure it performs
its intended function.

FLEXIBILITY Effort required to modify an operational program.

PORTABILITY Effort required to transfer a program from one hardware

configuration and/or software system environment to

another.

REJSMILITY Extent to which a program can be used in other

applications - related to the packaging and scope of the

functions that programs perform.

INTEROPEABILITY Effort required to couple one system with another.

* 21

2-3

2.2 SPECIFICATIONS USING SOFTWARE QUALITY FACTORS

2.2.1 DISCUSSION OF FIRST APPROACH

This first approach to specifying software quality uses the conceptualization

of factors in software quality described in the previous paragraph as the
basic mechanism for the acquisition manager to identify requirements for quality

in a software product which have comlete life-cycle implications. For

example, if the SPO is sponsoring the development of a system in an environ-
ment in which there is a high rate of technical breakthroughs in hardware

design, portability should take on an added significance. If the expected
life cycle of the system is long, maintainability becomes a cost-critical

consideration. If the application is an experimental system where the software
specifications will have a high rate of change, flexibility in the software

product is highly desirable. If the functions of the system are expected to

be required for a long time, while the system itself may change considerably,

reusability is of prime importance in those modules which implement the

major functions of the system. With the advent of more computer networks

and conmunication capabilities, more systems are being required to interface

with other systems and the concept of interoperability is extremly important.
All of these considerations can be accommodated in the framework derived.

2.2.2 STEPS TO BE FOLLOWED

1. In preparing a request for proposal (RFP) or system requirements

specification (SRS), the acquisition manager should identify and

assign priorities to the critical quality factors.

Each software system is unique in its software quality requirements.

There is no specific categorization of applications which can be

related to certain levels of quality. There are certain basic system

characteristics which effect the quality requirements. Each system

must be evaluated for its fundamental characteristics. These

fundamental characteristics and the related quality factors are
identified in Table 2-2.

2-4

W4ij ?73 §Yt C44,ri *tics 4ud 001OWe %fleity Fa~tors

CIIARD4TERISTJ *MLIT F*TS

q if hion lives are 4ffectsd 141ieoility

o Long life r-ygle Plimbit

goRal time application Efficiengy
PReliability

Pn-oqard impae Efi P~y

inforumation

2-5

These basic characteristics should be taken into account when the

critical quality factors are identified.

In considering all of the quality factors, the life-cycle implications

of the system are considered. Table 2-3 identifies the life-cycle

implications (impact of poor quality) of the quality factors and should

be used as an input in identifying the relative importance of the

quality factors.

During the process of identifying the importance of the quality

factors, the tradeoffs between certain quality factors should be

recognized. Table 2-4 should be utilized as a guide for determining

the conflicts in quality requirements. A few examples are provided

to illustrate how the table is interpreted:

Maintainability vs Efficiency - optimized code, incorporating intricate

coding techniques and direct code, always provides problems to the

maintainer. Using modularity, instrumentation, and well coumented

high-level code to increase the maintainability of a system usually

increases the overhead, resulting in less efficient operation.

Integrity vs Efficiency - the additional code and processing required
to control the iccess of the software or data usually lengthen run time

and require additional storage.

Interoperability vs Integrity - coupled system allow for wre avenues

of access and different users who can access the system. The potential

for accidental access of sensitive data is increased as well as the
opportunities for deliberate access. Often, coupled system share

data or software, which compounds the security problems as well.

2

2-6

34 34 b EcbE

ImI
1. L

4,1

04-- ----~ ~ -~
0

GAA

-2-

Table 2-4 Relationships Between Software Quality Factors

COETNESSY 0 0

H ~~RELIABILITY _ _0 0

LEGEND

22%8

It should be recognized this table only provides general guidelines and

further analyses along these lines should be made for specific cases.

* I It is important to note that if a high level of quality is required for

conflicting factors, the cost to achieve the requirements may be very

high.

2. Once the critical quality factors have been identified and priorities

assigned, they should be included in the RFP or SRS with definitions from
paragraph 2.1, and the developer required to comment on how the soft-

ware will be developed to exhibit the qualities specified.

3. Wherever possible, as much detailed explanation should be included

with the definition for each quality factor. For example, if

portability is a major concern to an acquisition manager, as precise
a description as possible should be included as to the types of

environments to which the system might be transported.

2.3 IDENTIFICATION OF CRITICAL SOFTWARE ATTRIBUTES

2.3.1 DISCUSSION OF SECOND APPROACH

This approach involves a refinement to the first approach described in

paragraph 2.2. Each quality factor is further defined by criteria which are

the software attributes whose presence in the software enhances the characteristic

r presented by the quality factor.

The criteria identified in the Factors in Software Quality Final Report are
shown in Figure 2-2, indicating which quality factors they significantly

impact, and are defined in Table 2-5.

These criteria are Osed in this approach to further define the quality

requirements.

2.3.2 STEPS TO BE FOLLOWED

1. Having identified the critical quality factors, the acquisition

manager then identifies the related critical software attributes

which are required. For example, if the acquisition manager wants

2-9

'I j

CORRECTNESS

-' ~~~~~Traceability Cnitny Cmltns

RELIABILITY

ErrTlerance Consistency] Accuracy Simpliit

EFFICIENCY

Execution Effiency Storage Efficiec

LEGEND
C> Factor INTEGRITY

E=Criteria

Access Control AccessAui

USABILITY

Training FConnnicativeness I Operability

MAINTAINADILITY

Consitency Simplcity Conciseness Modularity SefDsrpives

Figure 2-2 Relationship of Criteria to Software Quality Factors

2-10

NTESTPEABILITY

* ~~smlity Cou rctioustComnaiy Daa oauiait

Mdulrit 11E]ECriptivns5 mcieinSfwr s

4 F~gure 2-2 Relai~ of Crtra tware Qute aity ct eovs(cntiud

Indepndene In2-11e

Table 2-5 Criteria Definitions for Software Quality Factors

RELATED
CRITERION DEFINITION FACTORS

TRACEABILITY Those attributes of the software that provide Correctness
a thread from the requirements to the imple-
mentation with respect to the specific
development and operational environment.

COMPLETENESS Those attributes of the software that Correctness
provide full implementation of the functions
required.

CONSISTENCY Those attributes of the software that Correctness
provide uniform design and implementation Reliability
techniques and notation. Maintainability

ACCURACY Those attributes of the software that Reliability
provide the required precision in calcula-
tions and outputs.

ERROR TOLERANCE Those attributes of the software that Reliability
provide continuity of operation under
nonnominal conditions.

SIMPLICITY Those attributes of the software that Reliability
provide implementation of functions in the Maintainability
most understandable manner. (Usually Testability
avoidance of practices which increase
complexity.)

MODULARITY Those attributes of the software that Maintainability
provide a structure of highly independent Flexibility
modules. Testability

Portability
Reusability
Interoperabil1ty

GENERALITY Those attributes of the software that Flexibility
provide breadth to the functions performed. Reusability

EXPANDABILITY Those attributes of the software that
provide !or expansion of data storage
requirements or computational functions. Flexibility

INSTRUMENTATION Those attributes of the software that Testability
provide for the measurement of usage or
identification of errors.

SELF- Those attributes of the software that Flexibility
4 DESCRIPTIVENESS provide explanation of the implementation Maintainability

of a function. Testability
Portability

___Reusabil ity

2-12

. "I N I I I IS

Table 2-5 Criteria Definitions for Software Quality Factors (continued)

RELATED
CRITERION DEFINITION FATORS

EXECUTION Those attributes of the software that Efficiency
EFFICIENCY provide for minimum processing tim.

STORAGE Those attributes of the software that Efficiency
EFFICIENCY provide for minimum storage requlremnts

during operation.

ACCCSS CONTROL Those attributes of the software that Integrity
provide for control of the access of
software and data.

ACCESS AUDIT Those attributes of the software that Integrity
provide for an audit of the access of
software and data.

OPERABILITY Those attributes of the software that Usability
determine operation and procedures con-
cerned with the operation of the software.

TRAINING Those attributes of the software that Usability
provide transition from current operation
or initial familiarization.

COMMUNICATIVENESS Those attributes of the software that Usability
provide useful inputs and outputs which
can be assimilated.

SOFTWARE SYSTEM Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the software Reusability

environment (operating systems, utilities,
input/output routines, etc.)

MACHINE Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the hardware Reusability

system.

COMMUNICATIONS Those attributes of the software that Interoperability
COMMONALITY provide the use of standard protocols

and interface routines.

DATA COMMONALITY Those attributes of the software that Interoperability
provide the use of standard data repre-
sentations.

CONCISENESS Those attributes of the software that Maintainability
provide for implementation of a function
with a minimum amount of code.

2-13

to stress the importance of maintainability, the following software

attributes would be identified as required in the RFP or SRS:

Consistency
Simplicity

Conciseness

Modularity

Self-Descriptiveness

The precise definitions of these attributes would be included in

the RFP or SRS.

2. The acquisition manager should evaluate the software developer's

plan to provide the required software attributes for each quality

factor.

2.4 QUANTIFICATION OF SOFTWARE QUALITY

2.4.1 DISCUSSION OF THIRD APPROACH
This approach requires precise statements of the level of quality required of
the software. Currently, the underlying mathematical relationships which allow
measurement at this level of precision do not exist for general use. The

procedures for developing those relationships are documented in the Factors
in Software Quality Final Report. The mechanism for making the precise

statament for amy quality factor is a rating of that factor. r:e ratings
are explained in Table 2-6.

2.4.2 STEPS TO BE FOLLOWED

1. After identification of the critical quality factors, specific

performance levels or ratings required for each factor should be

specified. For example, a rating for mintainability might be

that the average time to fix a probim should be five man-days or

that 90% of the problem fixes should take less than six man-days.
This rating would be specified in the RFP. To comply with this

2-14

2. I

Table 2-6 Problem Report and Van-Power Expenditure Categorization

CATEGORY BY
QUALITY FACTOR EXPLANATION

o CORRECTNESS The function which the software is to perform is
incorrect. The rating is In term of effort required
to fix.

* RELIABILITY The software does not function as expected. The
rating is In term of effort required to fix.

o EFFICIENCY The software does not et performance (speed, stor-
age) requirements. The rating Is in terms of effort
required to fix.

e INTEGRITY The software does not provide required security.
The rating is in term of effort required to fix.

* USABILITY There is a problem related to operation of the soft-
ware, the user interface, or the input/output. The
rating is in terms of effort required to fix.

e MAINTAINABILITY The rating is in terms of effort required to correct
any of the above problems.

e FLEXIBILITY The rating is in terms of effort required to make a
modification due to a change in specifications.

9 TESTABILITY The rating Is in terms of effort required to test
changes or fixes.

e REUSABILITY The rating is in terms of effort required to use
software in a different application.

9 PORTABILITY The rating is in terms of effort requt/red to convert
the software to operate in a different environment.

* INTEROPERABILITY The rating is in terms of effort required to couple
the system to another system.

2-15

Sspecification, the software would have to exhibit characteristics which,

when present, give an indication that the software will perform to

this rating. These characteristics are measured by metrics. The
measurements are inserted in a matheatical relationship and a

predicted rating is obtained.

2. The specific mtrics should be identified which will be applied to
various software products of the development phase to provide an
indication of the progress toward achieving the required level of
quality. These metrics will be discussed further in the next section
and are defined in Section 6 of the Factors in Software Quality Final

Report.

2-16

SECTION 3

MEASURING SOFTWARE QUALITY

3.1 THE CONCEPT OF QUALITY METRICS

Figure 3-1 Illustrates the concept of applying metrics during the development
of a software system. The metrics are quantitative fesures of the software

attributes (criteria identified in paragraph 2.3) which are necessary to realize

certain characteristics (quality factors) in the software. The metrics
provide an indication of the progression toward the achtievwnt of high quality

end products. Specific acceptance tests can be oriented toward evaluating the
levels of quality achieved but these testing strategies are not within the

scope of this handbook.

As previously mentioned, the metrics have been developed to be applied to

products currently provided during a software development. They may be applied

either by acquisition manager personnel to delivered products, by contractor

personnel and reported in sumary format to the acquisition manager during
reviews, or by contractor personnel as part of their own quality assurance

program.

The metrics were developed so as not to restrict or interfere with the manage-

ment and development methodologies and techniques of the developer.

The metrics are listed in Table 6.2-1 of the Factors in Software Quality Final
Report with definitions following that table. Their application to software

products is described in Appendix D of that report. Typical automated tools

available in software development environments which assist in the metric

data collection are identified in Section 8 of that report also.

For illustration, som examples of metrics are provided in Table 3-1. The
complexity masure is calculated from a design chart and from source code

utilizing path flow analysis and data set/use information. The effectiveness

of comments measure is a quantitative measure based on objective guidelines

for inspecting the source code for the existence or absence of counents at

3-1

4a
I- 0

UJU

0 V-4
'.4 a.C 4-b

06.1C4 C
4a. 11IW

S I L ~ 4D. IV
14- 0~ A,. 0

a0 0
C 06.r

C~ H'; I,
4C1 94 * 0

C4 C
000 0

5 48.4A 4J' #A4(1.A

Cc~ 5. q-

3-2

dl Table 3-1 txample Metrics

RELATED QUALITY
METRIC WfENDNIC CRITERION FACTORS

Data and Control SI.3 Simplicity Reliability
Flow Complexity Maintainabil ity
Measure Testability

Effectiveness SD.2 Self-Descriptiveness Flexibility
of Comments Maintainability
Measure Reuisability

Portability

Machine MI.1 Machine Portability
Independence Independence Reusabil1ity
Measure

Completeness CP.l Completeness Correctness
Checklist

3-3

specific locations such as prologue comments with certain information,

branching statements, machine dependent code, declarative statements, and

so forth. The machine independence measure is a compilation of a number of

measurements which indicate the degree of independence of the design and

cede. The completeo ss checklist measures attributes that should be included

in specifications, design documents, and the code, which, if missing, increase

the probability that the final product will be functionally incomplete.

The fellweing paragraphs describe increasingly more detailed approaches

to utilizing these metrics to provide an indication of the quality of the

software being developed.

3.2 M INSPECTION OF SOFTWARE PRODUCTS USING METRICS

3.2.1 OISCUSSION OF APPROACH

The first level of measuring software quality involves applying the metrics

to software products as they are produced. Different sets of metrics are

applicable to products produced during the requirements analysis, design,

and coding phases of development. The use of the metrics in this manner

insures a formal and consistent review of each of the software products.

3.2.2 STEPS TO BE FOLLOWED

1. The subset of metrics which relate to the identified critical quality

factors and software attributes and are applicable to the phase of

development should be applied to the available software products.

For example, during the design phase, metrics could be applied to

design specifications, interface control documents, test plans,

minutes and materials prepared for reviews, and so on.

2. A subjective evaluation of how well the software is being developed

with respect to the specific quality factors can be made based on the

inspection of the software products using the metrics.

3-4

* S

3.3 METRIC INDICATOR CONCEPT

3.3.1 DISCUSSION OF APPROACH

The second approach utilizes experience gained through the application of

metrics and the accumulation of historical information to take advantage

of the quantitative nature of the metrics. The values of the measurements

are USed #s indicators for evaluation of the progress toward a high quality
product.

3.3.R TFPS TO BE FOLLOWED

1. After the metrics are applied to the available software products,

the values are obtained and evaluated. If particular modules receive

low metric scores, they can be individually evaluated for potential

problems. If low metric scores are realized across the system, an

evaluation should be made to identify the cause. It may be that a

design or implementation technique used widely by the development

team is the cause. Corrective action such as the enforcement of a

development standard can then be introduced.

2. Further analysis can be conducted, An examination of the metric

scores for each module in a system will reveal which metrics vary

widely. Further examination will reveal if this variation correlates

with the number of problem reports or with historical variances in

performance. This sensitivity analysis identifies characteristics

of the software, represented by the metrics, which are critical to

the quality of the product. Quality assurance personnel should

place increased emphasis on these aspects of the software product.

3. Threshold values may be established below which certain actions
would be required. A simple example is the percent of comments
per line of source code. Certainly code which exhibits only 1%

or 2% measurements for this metric would be identified for correc-

tive action. It my be that 101 to 201 is a more industry-wide

4 acceptable level.

3-5

3.4 FORMAL RELATIONSHIP OF NETRICS TO QUALITY FACTORS

3.4.1 DISCUSSION OF APPROACH

This approach is the most detailed of the three approaches to measuring soft-

ware quality. The underlying mathemtical foundations to the derivation of

the relationships are described in Section 7 and Appendix C of the Factors in

Software Quality Final Report. Basically, the measurements (m) for a

subset of metrics are applied to the software products of a specific phase

(0) in the software development. When inserted into the corresponding equa-

tion (normalization function) a rating for a particular quality factor (rF)

can be predicted as shown below:

f (m, m2 , ... m) = rF

Currently, generally applicable predictive equations are not available.

Specific normalization functions were developed during the study which

resulted in this handbook. They are based on a limited sample and are not

recommended for general use. The procedure for the derivation of equations

which would be very useful in a partcilar development environment is

described in detail within the report.

3.4.2 STEPS TO BE FOLLOWED

1. To illustrate the procedures involved in this approach, a normali-

zation function for ttw quality factor flexibility developed

during the Factors in Software Quality study will be used. The

normalization function, applicable during the design phase,

relates measures of modular implementation (MO.2F) to the flexibility

of the software. The predicted rating of flexibility is in terms

of the average time to implement a change in specifications. The

normalization function is shown in Figure 3-2.

3-6

+"i 1.0

.9

.7 -'

rF .6 0 rF S.S rF _ " "S . '

AVG MAN-DAYS
TOCHANGE /

.33

.3 -

.2 - .

.10 - I

lig l-f .1 .2 .3 .4 .5 .6.6S .7 .8 .9 1.0

MO.2 DUJLAR IPLEMENTATION MEASURE (DESIGN)

Figure 3-2 Normalization Function (Design) for Flexibility

The measurements associated with mMO'2 are taken from design documents and

reveal if input, output, and processing functions are mixed in the same

module, if application and machine-dependent functions are mixed in the same

module, and if processing is data volume or data value limited.

As an example, assume the measurements were applied during the design phase

of a project and a metric value of .65 was measured. Inserting this volue

in the normalization function:

rF = .51 m t

results in a predicted rating for flexibility of .33 (Identified by point A

in Figure 3-2). If the acquisition manager had specified a rating of .2

(1/5 average man-days to change), which is identified by point B in Figure 3-2,

he has an indication that the software development is progressing well with

I

.. I I lll I II U I .. . -7 , , - -

respect to this desired quality. By analyzing the variance associated with

this normalization function, it is shown in Figure 3-3 that the acquisition

manager has an 86% level of confidence that the flexibility of his system

will be better than his specified rating.

MEAN =.33

(SPECIFIED RATING) .2

MEAN - .33 (PREDICTED RATING)
STANDARD DEVIATION = .12 (STANDARD ERROR OF ESTIMATE)

LEVEL OF CONFIDENCE = Pr {x 2,21} .86 (SHADED AREA)

Figure 3-3 Detdrmination of Level of Confidence

2. The comparison of the predicted rating with the specified rating

provides a more quantitative indication, with an associated level of

confidence, of how well the software development is progressing

toward achieving the specified levels of quality. Corrective

action based on further analysis would be in order if the predicted

rating was lower than the specified rating.

3-8

MISSION
of

Rome Air Development Center

RAW plans and conducts research, exploratory and advanced
development programs in command, control, and conwanications
(C3) activities, and in the C3 areas of informtion sciences
and intalligence. The principal technical mission areas
are co--zications, electromgnetic guidance and ctontrol,
surveillance of ground and aerospace objects, Inteoigawce
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, AcrOWaVe
physics and electronic reliability, maintainability and

Ccompatibility.

Pritd by
United Sttes Air Force
Hanscom AFB, Mass. 01731

